Senior Corning manager speaks to MITES students in career seminar

Dr. Gregory E. Williams, a 25-year-plus veteran of Corning Incorporated, hosted a career seminar on July 15th at MIT for 72 rising high school seniors as part of Minority Introduction to Engineering and Science (MITES). Dr. Williams, who graduated with a degree in physics from MIT in 1983, spoke about his work, the importance of different perspectives in the STEM field, and the value of lifelong friendships and passions the students would develop through MITES.

Dr. Williams talks to the MITES students about the importance of community and passion.

Dr. Williams talks to the MITES students about the importance of community and passion.

“This is the most wonderful experience you’ll ever have in your life: finding gifted, like-minded people,” Dr. Williams said. One of the main goals of the MITES program is to foster a community of motivated individuals who collaborate on projects that interest them in ways that encourage personal development. The students come to MITES from all across the country and from a variety of socio-economic and cultural backgrounds.

“I believe that diversity of thought, mind, religion and gender is important,” said Dr. Williams. He explained that today’s technology is the result of multiple viewpoints coming together to explore ideas that might not otherwise be given a chance. Because of these ideas, innovation is occurring so rapidly that some of today’s developments won’t see widespread adoption for twenty or more years, Dr. Williams said.

Students respond to questions on modern technology and the future of STEM.

Students respond to questions on modern technology and the future of STEM.

One piece of technology that attracted Dr. Williams to Corning is still a cornerstone of the company’s business. “Early in my career, I wanted to do something to further mankind, so I went to Corning, where we built fiber optic cables that stretched from the U.S. to the U.K.,” he said. Because of their high conductivity and strength, fiber optic cables remain a better choice for transmitting information than traditional copper cables.

Dr. Williams encouraged MITES students to search for the things that inspire them just like his work at Corning does. “Many of you will become part of the research and development field, seeing things that have never been seen before,” Dr. Williams said. “I want you to think very carefully about your future. Think hard about why you’re doing the things that you’re doing.”

With the MITES students carefully weighing college and career options, Dr. Williams stressed the importance of getting to know people with similar interests and maintaining those relationships. “When you go back to school, you’re still going to feel like a fish out of water, but now you’ve made friends, maybe friends for life,” he said. “Never stop dreaming.”

Sydney Lester

STEM Program brings local middle school students to MIT for science and engineering enrichment

From July 7 through August 9, 86 students who attend public middle schools in Boston, Cambridge and Lawrence, Mass., participated in science and engineering enrichment at MIT through the five-week Science, Technology, Engineering and Math (STEM) Summer Institute, a component of the STEM Program offered by the MIT Office of Engineering Outreach Programs (OEOP).

Sixteen instructors, all of whom are undergraduates, taught the students in eight subject areas. Rising sixth graders studied biology and algebra, rising seventh graders studied chemistry and physics, rising eighth graders studied probability and statistics and engineering design, and rising ninth graders studied pre-calculus and robotics. The instructors worked closely with expert mentors to prepare their curricula, and academic advisors provided additional student and instructional support.

A primary goal of the program – which is offered free of charge due to generous support from individuals, foundations, corporations and MIT – is to empower local students with the skills and confidence needed for future success in technical careers.

Probability and Statistics Instructor Mia Bernardino, a civil engineering major at Seattle University, values the STEM Program’s focus on students from underrepresented and underserved backgrounds. “I really want to inspire minority students to work in the STEM field,” she says. “There are not many women in the civil engineering field, or engineering in general. I want to be an example for other young women, to show that they can be like me one day and teach others.”

Words by Sydney Lester and Nick Holden, photos by Meredith Lawrence

A different sense of pride

stephan

Stephan Boyer, MITES ’08, is an MIT graduate student and member of the Computer Science and Artificial Intelligence Laboratory (Photo: Meredith Lawrence).

In 2008, Stephan Boyer was a top student at his California high school. Interested in electrical engineering, Stephan traveled to MIT to enroll in Minority Introduction to Engineering and Science (MITES) during the summer before his senior year. Through six weeks of new challenges and a college-level engineering curriculum at MITES, Stephan discovered there was much to learn from his peers.

“I had no idea what a top-caliber student, an MIT student, looked like,” said Boyer. MITES exposed him to other students who excelled at school and inspired him to pursue his interests in engineering and computer science. “The people I met were passionate and cared about their fields,” Stephan says. “They were independent thinkers.” 

During MITES, Stephan found himself and his peers working harder than they ever had before. “Everyone in the program is united by one thing,” Stephan says. “They have this fire that can’t be put out.” That fire shifted many of Stephan’s preconceived beliefs. “MITES put me in an environment where everyone was passionate,” he says. “They made me more open minded to things I’d never questioned before. I’d never had the opportunity to see things from a different perspective.”

Confident before MITES, Stephan met people who showed him that there was room to grow. “If your ego leads you to believe you’re already at the top, then you don’t have that drive,” he says. “There’s no motivation to push it further. MITES removed that sense of pride and replaced it with a different sense of pride. I come from a family of people who push me every day to be better than I thought I could be.”

As a graduate student at MIT and member of the Computer Science and Artificial Intelligence Laboratory (CSAIL), Stephan now uses his MITES foundation to move forward in his computer science career. While at MIT, he has taken on a number of challenging projects, which have led him to build a self-balancing unicycle, develop and implement a new computer programming language, and launch an app with 72,000 registered users.

Through his journey, Stephan has found creative motivation in people. “I draw inspiration from my closest friends, mostly at MIT,” he says. After MIT, Stephan hopes to start his own company in order to explore new ideas in a collaborative environment – a dream that started at MITES and continued through his education. “I want to push boundaries and do things that haven’t been done before,” he says. “I want to push the frontier of what’s possible.”

—Sydney Lester 

MIT Aeronautics and Astronautics Professor Wesley Harris speaks to MITES students as part of lecture series

Best

Professor Harris engages MITES students with modern engineering questions.

Charles Stark Draper Professor of Aeronautics and Astronautics Wesley Harris facilitated a lively discussion with the 72 Minority Introduction to Engineering and Science (MITES) students on June 24. Topics included recent technological advances and the intersection of science and ethics.

“Build something, do something, study something,” Professor Harris said. “Get a passion in your heart. Get a passion in your belly.” Professor Harris spoke to the eager group of students about finding their niches in higher education and the greater world, as well as the “wonderful problems” awaiting them.

The following discussion focused on responsible progress, with an emphasis on keeping human interests in mind. In an era of rapid scientific growth, robots have replaced entire populations of workers. While technology can eliminate jobs, it has the ability to cultivate and expand the job market, Professor Harris said.

“Would you build a robot for Ford that eliminates jobs?” Professor Harris asked. The challenge of balancing progress and human interests became obvious to the students: If more jobs are eliminated than created by new technology, the purpose of scientific advancement is defeated.

Professor Harris started his career studying ecology at the University of Virginia and later researched rotorcraft technology, aerodynamics and fluid dynamics, sickle cell pathology, financial management methods, and defense systems acquisition. His lecture incorporated anecdotes from years of research and teaching.

Talking points

Throughout the discussion, Professor Harris posed the students questions from modern engineering challenges. One of these challenges involved stimulating human sensory responses with mere images and the obstacles associated with this task. “A rose is more than color. It has texture. It has fragrance,” he said. “How do I look at water visually and feel its wetness?”

“Our brains process things differently,” one student responded. “It is not your eyes that see, but your brain.”

Professor Harris also challenged the students to think of creative ways to ensure that space travelers return home with their original features and characteristics. “How does the human body respond to weightlessness? We want people coming back from Mars looking just like they did when they left, with one head, not two,” Professor Harris said.

Questions for the future

At the end of the presentation, students peppered Professor Harris with questions about glacial melting, genocide and efficient energy production without turbines, to name a few.

One student, Fabian Aristizabal of Hialeah, Fla., was concerned with the concept of life after human travel to Mars. “After Mars, what comes next? We’re stuck in our own neighborhood,” he said. Abigail Arnold from Seattle, Wash., asked, “Are humans fixed creatures, or do we move in conjunction with time and space to create our own perceptions of reality?”

Though the lecture focused primarily on engineering, Professor Harris left the MITES students with life advice. Asked to describe the legacy he wished to leave behind, Professor Harris said, “One: That I have been a good father. Two: To understand that I’ve been fair and positive, and that every day I move through this world with no intent to harm anyone. Three: That I’ve had a career in which there was modest success as a teacher and a researcher.”

—Sydney Lester

39th MITES class welcomed to MIT

The MITES class of 2014 met in Simmons Hall for a welcome dinner.

The MITES class of 2014 met in Simmons Hall for a welcome dinner.

On June 13, 72 rising high school seniors from across the country joined instructional staff and administration at MIT’s Simmons Hall for the Minority Introduction to Engineering and Science (MITES) Welcome Dinner. It marked the beginning of the 39th session of MITES, the longest-running offering of the Office of Engineering Outreach Programs.

Yonatan Tekleab, summer program coordinator for MITES, greeted the students and charged them with one task: to change the world. “Changing the world can mean something different for everyone,” he said, while recounting his own academic and career path. He also commented on the social experience of the MITES program. “The bonds you create with one another will be everlasting,” he said.

Through the intensive MITES curriculum, each student will complete courses in calculus, physics, life science and humanities, along with one hands-on engineering elective course. At the welcome dinner, Kathryn Shroyer of the MIT Sea Grant College Program previewed the new Underwater Robotics course, which joins MITES after a successful pilot course in OEOP’s one-week program, Engineering Experience at MIT (E2@MIT), last year.

After dinner, students learned about policies surrounding housing, safety and fitness and recreation. Instructors and teaching assistants introduced themselves and the topics they planned to cover, and Brandon Holloway, head teaching assistant and MITES ’09 alum, revealed this year’s class theme: crafting the pillars of innovation.

MITES Faculty Director and MIT Professor Cardinal Warde stressed the value of good citizenship, striving for excellence and stepping up to take challenges. He reminded students that “someone gave money to give you the chance to be here. Show appreciation. We want you to try really hard.”

The level of excitement in the hall was high among instructors, coordinators, teaching assistants and especially the students. Ahmed Bosier, from Detroit, MI, said he’s excited to collaborate with like-minded people and learn more about engineering.

Abigail Arnold from Des Moines, WA said that aside from the great opportunity of being at a place like MIT, she’s most looking forward to meeting her peers. “We’re already planning a movie night,” she said.

In the closing remarks, Shawna Young, executive director of OEOP, reinforced that students will work harder than they have before, but that the experience will be worth it. “Take in every moment,” she said.  “You won’t get it back, but it’s okay, because you have it now.”

—Alexandra Koktsidis

Dean of Engineering speaks to local OEOP families during annual dinner

"Pick the thing that's most exciting," Ian Waitz, Dean of the school of Engineering, told students during the annual dinner with the dean event.

“Pick the thing that’s most exciting to you,” MIT Dean of Engineering Ian Waitz told students during the annual dinner with the dean event hosted by OEOP.

On May 19, the MIT Office of Engineering Outreach Programs (OEOP) hosted its annual Dinner with the Dean event, featuring a talk by MIT Dean of Engineering Ian A. Waitz. Over 60 high school and middle school students – all participants of OEOP’s programs for public school students from Boston, Cambridge and Lawrence, Massachusetts – arrived with their families at the Ray and Maria Stata Center for dinner, refreshments, and a chance to learn more about engineering and MIT from the dean.

“Engineers are people solving problems that matter,” Waitz told the students and their families. “We really value when we look at the world and see how something changed.”

Waitz, a faculty member of the MIT Department of Aeronautics and Astronautics since 1991 and dean since 2011, highlighted several important elements of the engineering student experience at MIT, including a hands-on approach to learning, opportunities to work abroad, and a special focus on collaboration in projects. “Engineering is not a job where you’re working in a box by yourself,” he said.

Students asked Waitz a wide range of questions including what they could do to prepare for an engineering track in college. Waitz said that the first step is learning the fundamentals of math and science in high school by taking every course available to get a full understanding of basic principals. He noted that the students in the room are already on the right track by taking the programs offered through OEOP.

Another student asked how to plan her undergraduate engineering education to maximize her job prospects after graduation. “Most employers are not focused on what you did. It’s about what you can do for them,” Waitz said, emphasizing the importance of being entrepreneurial.

Waitz concluded the ceremony by offering advice that guided him in his career. “Always be open to options,” he said. “Pick the thing that’s most exciting to you.”

—Alexandra Koktsidis

Mechanical arm wrestling demonstrates muscles’ electrical signals for local middle school students and mentors

On April 5, dozens of local middle school students stuck electrodes to their arms and observed the power of the electrical signals that travel through their muscles. The activity was part of the Office of Engineering Outreach Programs’ Middle School Mentoring Program, which pairs undergraduate and graduate mentors with middle school students from Boston, Cambridge and Lawrence, MA.

In the activity, developed by the NSF Engineering Research Center for Sensorimotor Neural Engineering – a partnership between MIT, the University of Washington and San Diego State University, among other institutions – electrical signals from the students’ muscles, captured by electrodes, controlled motors in two mechanical arms. Together, those two mechanical arms formed a simulated arm-wrestling game called WrestleBrainia 3000, in which students competed to pin their opponents by generating stronger electrical signals.

Before entering the WrestleBrainia ring, the students and their mentors tested a simpler version of the system that used the electrical signals from their muscles to control a single motor. They experimented with sensor placement and arm movement to determine the effects of different variables on the speed of the motor. At the end of the activity, the students shared out their findings to their peers and mentors.

MIT Professor Joel Voldman led the activity, introduced the students to the field of sensorimotor neural engineering, and showed a real-world application in a 60 Minutes clip featuring an amputee who could control a robotic arm through electrodes attached to her head.

—Nick Holden